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Overview

• Effects	of	Environment	on	Health
• Key	Concepts
• Initial	Work	– AMIA	2014
• Limitations
• Challenges	and	Informatics	Methods	and	Solutions
• PRISMS
• Informatics	Architecture
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Effects	of	Environment	
on	Health
• Phenotype:	Result	of	interactions	
between	genotype	and	
environment.
• Environmental	factors	contribute	
significantly	by	themselves	and	
their	interaction1 with	behavioral,	
occupational	and	metabolic	
factors1.

Disability-adjusted life-years attributable to behavioral,
environmental, occupational, and metabolic risk factors1.4



Flint	Water	Crisis
• Lead	Poisoning	in	kids

• Immune	disorders
• Criminal	tendencies
• Behavior	and	learning	problems
• Lower	IQ	and	hyperactivity
• Slowed	growth
• Hearing	problems
• Anemia

• No	known	safe	level	of	lead	in	a	child's	
blood.
• Lead	Action	Level:	10%	of	drinking	water	
>	10	parts	per	billion.
• CDC’s	public	health	actions:	when	the	
level	of	lead	in	a	child’s	blood	≥	5	
micrograms	per	deciliter2.

http://electrochemistryresources.com/wp-
content/uploads/2016/02/corrosion-water-pipe.jpg
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Exposome3-6

• Encompasses	life-course	of	
environmental	exposures	
(including	lifestyle	factors)	from	
prenatal	period	onwards.
• Complements	genome	by	
providing	a	comprehensive	
description	of	lifelong	exposure	
history.

General	External	
Environment

Specific	
External	

EnvironmentInternal	
Environment

Overlapping	domains	within	exposome6



Exposomics

• Study	of	defining,	generating	and	utilizing	exposomes in	biomedical	research.
• Ongoing	efforts:

• HELIX7:	Early	life	exposome
• EXPOsOMICS8:	Assess	exposures
• HEALS9:	Studies	exposure	to	environmental	stressors	and	health	outcomes
• NIH’s	Environmental	influences	on	Child	Health	Outcomes	(ECHO)	Program10:	
Understanding	the	effects	of	environmental	exposures	on	child	health	and	
development

• Requires	a	systems	biology	approach.
• ‘Expotying’:	Exposure	of	a	biological	entity	usually	with	reference	to	a	specific	
characteristic	under	consideration.
• Also	called	as	Exposome	Informatics,	Exposure	Information	Science.
• Provides	great	opportunities	to	Biomedical	Informatics11.
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Defining	and	Generating	an	Air	Quality	
Exposome
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Background
• Air	Quality	(AQ)	has	been	associated	with	various	adverse	health	effects

• Asthma
• Cardiovascular	disease
• Respiratory	infections
• Cancers
• Impaired	glucose	tolerance	during	pregnancies12-15.

• Researchers	at	the	University	of	Utah	are	embarking	on	clinical	studies	to	
understand	associations	between	the	peculiar	AQ	patterns	in	Salt	Lake	City	
and	clinical	conditions:
• Cerebral	venous	thrombosis
• Exacerbations	of	idiopathic	pulmonary	fibrosis
• Suicide
• Reproductive	outcomes
• Cancers.

9



Salt	Lake	City	Air	Quality

• Prone	to	winter	inversions	where	
colder	surface	temperatures	trap	
fine	particulate	matter	(PM2.5)	which	
poses	serious	health	concerns.
• Summer	months	in	the	valley	have	
increased	ozone	(O3)	levels16.
• Natural/Quasi-experimental	
conditions.

Courtesy:	Dr.	K.	Kelly
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OpenFurther17-18

• Query	Tool
• Federated	Query	
Engine

• Data	Source	Adapters
• Admin	&	Security	
Components

• Virtual	Identity	
Resolution	on	the	GO	
(VIRGO)

• Quality	&	Analytics	
Framework

• Metadata	Repository
• Terminology/Ontology	
Server

• Air	Quality	Modelling	
Unit
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OpenFurther	Deployments	and	Uses

Cohort	Selection,	
University	of	Utah

Comparative	
Effectiveness	Research,	

PHIS+

Cohort	Selection,	
University	of	North	

Carolina

Data	Integration	&	
Analytics	Pipeline,	Utah	
Department	of	Health
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Air	Quality	- Clinical	
Data	Federation

• Demonstrated	feasibility	of	
federating	air	quality	data	from		
Environmental	Protection	Agency	
(EPA)	with	clinical	data	from	
University	of	Utah	using	
OpenFurther19-20.
• Ability	to	select	different	cohorts	of	
patients	living	in	SLC	county	and	
having	clinical	conditions	(e.g.	
asthma)	occurrences	that	were	
related	to	temporal	variations	of	air	
pollutant	concentration.
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Air	Quality	Monitoring	in	Salt	Lake	County

• Three	monitoring	stations	in	Salt	
Lake	County.
• AQ	species	concentration	variations	
due	to	topography,	altitude	and	
meteorology21-22

• What	is	the	air	quality	at	any	other	
location?
• Need	for	cross-linking	patient	
locations	and	condition	occurrences:	
High	Resolution	Spatio-temporal	Air	
Quality	Grid
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Air	Quality	Exposome

Pollutant	&	
Quantity

Travel Home Ventilation

Outdoors Clinical	
Conditions

Biological	
Membranes

Others

Air	Quality Socio-economic Behavioral Clinical/Physiological Genomic Proteomic
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Biomedical	Research	Air	Quality	
Requirements

• Primary	need:	understand	risks	associated	with	being	exposed	with	
various	air	pollutants.
• Manifestations	following	exposure	could	occur
• Immediately
• After	a	lag	phase
• Could	persist	over	long	durations.

• Need	for	understanding	pathophysiology	and	mechanisms	of	these	
manifestations.
• Current	research	mainly	associates	single	pollutant	and	clinical	
conditions,	future	areas	of	research	could	include	exposures	to	
multiple	pollutants.
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Utilizing	Air	Quality	Data	in	Biomedical	
Research

• Integrating	AQ	and	biomedical	data	needs	to	support
• Spatio-temporal	variations	of	air	pollutant	species.
• Heterogeneous	data.
• Location	of	individuals.
• Timing	of	the	occurrence	of	events.

• AQ	data	and	research	requirement	granularities	vary	from	
instantaneous	to	longer	duration	averages	depending.
• Simplification	of	understanding	and	integrating	AQ	data	with	
biomedical	data.
• Support	bench,	translational,	clinical	and	population	research.
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Challenges	and	Informatics	Methods	and	
Solutions

Data	Sources

Mathematical	Modeling

Uncertainty	Characterization

Data	Integration
• Semantics	
• Metadata
• Time	&	event	modeling
• Infrastructure	for	multi-scale,	multi-omics	integration

Presentation/Visualization
• Salient	feature	extraction
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University	of	Utah’s	PRISMS	Informatics	
Infrastructure
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Pediatric	Research	using	Integrated	Sensor	
Monitoring	Systems	(PRISMS)	
• Sensor-based,	integrated	health	monitoring	systems	for	measuring	
environmental,	physiological,	and	behavioral	factors	in	pediatric	
epidemiological	studies	of	asthma,	and	eventually	other	chronic	
diseases23.
• Sensor	Development	Projects
• Informatics	Platform	Technologies
• Data	and	Software	Coordination	and	Integration	Center

• Utah	Team:	Electric	Engineering,	Chemical	Engineering,	Computer	
Science,	Atmospheric	Sciences,	Industrial	Engineering,	Informatics,	
Software	Developers,	Nursing,	Pediatrics.
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Air	Quality	Data	Sources

Different	air	quality	species
• Particular	Matter:	PM2.5,	PM10,	UPF
• Ozone
• Carbon	Monoxide
• NOx (nitric	oxide	and	nitrogen	dioxide)
• Sulphur	 Dioxide
• Lead
• Water	Vapor
• Carbon	Dioxide
• Volatile	Organic	Compounds

Choice	of	selectable	sources	for	each	species

High	resolution	spatio-temporal	AQ	grid
• Personalization
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Types	of	Air	Quality	Sources

Personal	Sensors Laser	Ceilometers Novel	Sensors Mobile	Sensors

Balloon	Sensors Satellite-derived	
aerosol	optical	depth	

measurements

State	Environmental	
Department	Networks

Environmental	
Protection	Agency

22



Air	Quality	Mathematical	Models

• Validated	on	the	east	coast
• Doesn’t	consider	Altitude
• 12	kilometer	resolution
• Hierarchical	Bayesian	model

Environmental	
Protection	Agency	–
Center	for	Disease	
Control	Model24

• Describe	regional	and	small-scale	spatial	and	temporal	gradients
• Uses	measured	PM	concentrations,	monitoring	site	location,	GIS-
based	location-specific	characteristics	and	location-and	month-
specific	meteorological	data,	and	spatial	smoothing	of	monthly	and	
long-term	averages

Generalized	Additive	
Mixed	Models25

• Fill	gaps	in	measured	data	with	mathematical	models.
• A	library	of	AQ	data	models	to	provide	high	spatio-temporal	
resolution	with	a	framework	validate	the	model	output.
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Uncertainty	Characterization26

• Selection	of	appropriate	AQ	sources	and	models
• Inherent:	Variations	in	unknown	conditions
• Reducible:	Associated	with	the	model	and	input	conditions.
• Exposure	Uncertainty:	Arising	due	to	differences	in	person’s	exposure	and	
true	ambient	AQ	levels. 24



OpenFurther	Modifications
1 2 3

45
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Semantics	for	Data	Integration
• Semantic	interoperability	for	Internet	of	Things	(IoT)27

• Stored	in	Terminology/Ontology	Server
• Examples

• Describes	sensors	and	observations,	and	related	concepts.Semantic	Sensor	Network	
Ontology28

• Standard	models	and	XML	schema	for	describing	sensors	systems	and	
processes	associated	with	sensor	observations.

Sensor	Model	Language	
(SensorML)29

• Standard	measures	related	to	complex	diseases,	phenotypic	traits	and	
environmental	exposures.PhenX Phenotypic	Terms30

• Facilitate	centralization	and	integration	of	exposure	data	to	inform	
understanding	of	environmental	health.Exposure	ontology	(ExO)31

• Gene	Ontology,	UniProt,	SNOMED	etc.Standard	biomedical	
ontologies	and	terminologies 26



Metadata

• Stored	in	Metadata	
Repository18

• Relational	or	graph	stores
• Stores
• Source	and	Central	Data	Models

• Harmonized	sensor	data	model
• Data	provenance	and	associated	
uncertainty
• Inter-model	transformative	
functions

27



Time	&	Events

• Data	modeled	and	stored	in	primitive	form	on	a	timeline	as	events.
• Transformed	to	higher/analytical	models	based	on	use-cases.
• Time	modeled	as32:
• Unbounded:	Contains	upper	and/or	lower	bounds	with	respect	to	its	order	
relationship.	
• Dense:	an	infinite	set	of	smaller	units.
• Discrete:	every	element	has	both	an	immediate	successor	and	an	immediate	
predecessor,	if	unbounded,	and	within	the	bounds	if	bounded.
• Instants	&	Intervals	(upper	and	lower	time	points).
• Finest	granularity	available	with	the	source.
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Data	Integration	
Workflow

1. User	can	query	for	a	cohort	or	complete	datasets.
2. (a	&	b)	Heterogeneous	data	sources	(where	A	and	B	

represent	mobile	 sensor	data	sources,	C	represent	
environmental	monitoring	data	sources	and	D	
represent	biomedical	 data	sources),	and	(if	needed)	
mathematical	models	using	EDMU	are	selected.
• Environmental	data	(A,	B	&	C)	harmonized	to	the	central	

models	stored	in	MDR.	Selection	of	mathematical	 models	
managed	in	the	EDMU.

3. OF	synthesize	results	in	different	analytical	 models.
4. Presents	them	as	cohorts	and/or	aggregated	results.	 29



Research	Use-Cases

Retrospective
&	Population	

Studies

30



Conclusion

• Scalable	informatics	architecture	that	is	generalizable	beyond	air	
quality	and	pediatric	asthma.
• Integrates	multi-scale	and	multi-omics	data.
• Genome-phenome-exposome

• Big	Data	integration:	volume,	velocity,	variety,	veracity	for	research	
value.
• Robust	pipeline	for	research	data	delivery	with	decision	support.
• Support	different	types	of	research.
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